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In the development of connectionist models it is popular to rely on the concept of self-organiza-
tion and to employ analogies from thermodynamics. Here we review some aspects of seff-organi-
zation and thermodymamic law. We concluode that they do, indeed, have much to offer the
modeling of human action. However, we further conclude that connectionists have failed to
exploit the full potential of the properties inherent in a thermodynamic model of self-organization.
Their use of self-organization Jacks the imperatives of physical theorists or biologists who have
written extensively on the topic. The use of computational temperature as an ordering principle
for associative memory is analyzed. The more commen approach in connectionism, to seek order
through cooling, has less potential to explain the emergence of new behavioral properties than an
approach that seeks order through heating. Thermodynamics as a source of analogies is also seen
as limiting and we question the value of analogy as a basis for a scientific endeavor. An appeal to
iae constructive role of the Second Law as it operates on open systems can account for important
features of organized activity. In this view the Second Law does not offer analogies; it is a law that
describes the causal basis of human action.
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Introduction

Following a long period in which little interest was expressed in
mechanistic accounts of motor control, an emerging concern with
theories of cognition encruraged the development of motor theories
that drew heavily on information processing and representational con-
cepts (Adams 1971; Pew 1970; Schmidt 1975). These attempts at
explanation were presumably driven by a preference for the deductive
scientific strategv that a theory of mechanism allows (Casti 1989) but
they raise a concern about the problem of infinite regress in that they
assume a mechanism that incorporates the detail to be explained
(Kugler 1986). In addition, serious questions can be raised about their
biological plausibility.

In accordance with Casti (1989) we take the position that a theory of
mechanism is desirable or even essential for the study of human
behavior. Our interest is in the developmeni of a theory of human
action for which the origin and evolution is biologically plausible. A
specific concern is with nomination of the semantic primitives. How
can a mechanism for intelligent or organized behavior evolve without
an a p:rion description of that behavior being provided by an external
agent? Biological plausibilitv and nomination of semantic primitives
are, we believe, foundational issues for the modeling of a mechanism
that can support human action.

The emerging discipline of Parallel Distributed Processing offers the
possibility of a solution. Proponents claim that their models are bio-
logically plausible and that semantic primitives are not inserted into the
system by the theorist (Smolensky 1988). It has been claimed that the
approach constitutes a paradigm shift (Schneider 1987), and it is one
that might be as effectively applied to human action as to human
cognition. In particular, we view organized human activity in a percep-
tual-motor workspace as supported by a style of cognition which is
conceptually nc different to the style of cognition generally envisioned
within the connectionist literature. From that perspective, those inter-
ested in mechanisms underlying the organization of human movement
should profit from understanding what is going on. In this paper we
review fundamental concepts that drive some of the connectionist work
and evaluate their use by theorists involved in connectionist modeling.
In addition, we consider the more general value of those concepts in
the study of human behavior.
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The problem

One central theme to Parallel Distributed Processing (PDP) is that of
self-organization. Rosenblatt’s ‘vision of the human information
processing system as a dynamic, interactive, self-organizing system lies
at the core of the PDP approach’ (McClelland et al. 1987: 42; in
reference to Rosenblatt 1959, 1962). Self-organizing systems are neces-
sarily dynamic and interactive. Thus we are left with the issue of what
it means to be self-organizing. A second significant theme running
through PDP is an appeal to thermodynamic law as a source of
analogies for cognitive process. What is to be gained by delving into
thermodynamic law that is not already well ersugh covered in other
contemporary accounts? Furthermore, is it satisfactory for a new
scientific thrust to be based on analogy?

In this paper we will explore several issues. The first is the concern
within the connectionist literature for micro and macro descriptions
and the mapping between them. The second is the use of thermody-
namic law in cognitive theorizing. We will contrast cooling versus
heating as principles for the emergence of order from disorder within
the context of self-organization and will explore the notion of an
associative memory. Finally, we will contrast the roles of analogy and
law as a basis for scientific progress.

Levels of description

The goal of PDP is to offer ‘computationally sufficient and psycho-
logically accurate mechanistic accounts of the phenomena of human
cognition’ (McClelland et al. 1987: 11; Ballard 1986: 67). To that end
connectionists are primarily concerned with the micro (mechanistic)
structure of cognition although they recognize that macro (phenome-
nal) processes influence behavior. In particular, there is a regard for
emergent phenomena that could never be predicted or understood from
an isolated description of the micro structure but can be understood in
terms of interactions within the micro structure (Rumelhart and Mc-
Clelland 1987: 128). In the PDP view, entities referred to at the macro
level of behavior are approximate descriptions of emergent properties
of the micro structure (McClelland et al. 1987: 12).
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Forms of description

It is to be hoped that the meanings of these statements have not been
distorted out of context, because we now wish to make some subtle but
important distinctions about the nature of description. At a single level,
there can be alternate forms of description; more detailed, more
abstract, or merely based on a different language or concepts. There
can also be alternate descriptions between levels. Classical reduction-
ism supposes that macro phenomena can be described in more detail at
a micro level and if the micro concepts are available there is little to be
gained from description at the macro level. According to this view the
study of macro behavior results in an alternate description of tem-
porary value to be replaced by neurological, and possibly physical and
chemical descriptions when enough is known at the micro level.

A contrasting view is that descriptions at the micro and macro levels
are complementary (Pattee 1979); that is, they mutually enhance each
other but are not fundamentally reducible one to the other. Accurate
descriptions at both macro and micro levels plus knowledge of how the
micro phenomena map into the macro phenomena (and, in a self-
organizing system, how macro and micro states interact) are essential
to understanding mechanisms that result in organization at the macro
scale. From this perspective the PDP enterprise seems well motivated.
Nevertheless, clarification has been offered here because a considera-
tion of macro states does not always appear to impose any significant
constraints on PDP theorists (e.g., Smolensky 1987) and there is the
occasional implication that an understanding of interactions within the
micro structure is sufficient for a full understanding of cognition
(Rumelhart and McClelland 1987: 128).

Between-scale mappings

The view developed in this paper is that a consideration of both
micro and macro levels is crucial. They are complementary and irre-
ducible descriptions. Neither can be deemed the more fundamental or
primary and neither can serve as an approximate description of the
other. Furthermore, an important key to furthering understanding of a
(cognitive) mechanism lies in exploration of the mapping between the
two levels (fig. 1). Lucid and accurate descriptions are required at both
levels before the mapping problem can be solved. It would seem,
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MACRO STATES

MACRO ~ MICRO
INTERACTIONS

MICRO STATES

Fig. 1. Natural phenomenz may be described at mmliiple Jevels or scales. In the classical

reductionist view these are allernate descriptions with the micro description constituting the

scientifically more significant level. From the self-organizational perspective descriptions at two or
more levels and knowledge of interactions between levels are essential for full understanding,

nevertheless, that there are useful (although as yet partial) descriptions
at both the macro level (human behavior) and the micro level (neu-
rology, biochemistry, etc.). In many developments of PDP models
connectionists have embarked on the important task of exploring the
mapping between the two levels.

Micro and macro descriptions of brain and behavior

Norman (1987: 534) observes that PDP models treat psychological
data within constraints imposed by neurological data. This approach is
consistent with Crick’s (1979) view that an explanation of human
behavior cannot be derived either from psychology on its own or from
the neurosciences in isolation from psychology. Knowledge from both
is essential with the further need to understand how the micro states
and processes studied by the neurosciences are linked to the macro
behavioral states studied in psychology (fig. 2). For Crick, communica-
tion theory (which appears to encompass notions of how neuronal

COGNITION

DOMAIN OF PSYCHOLOGICAL DATA
MACRD STATES
"MIND STATES®

PROBLEM: WHAT IS THE
NATURE OF THE MAPPING ?

MICRD  STATES
YBRAIN STATES"
DOMAIN OF NEURDLOGICAL DATA
Fig. 2. An important key to understanding cognition lies in understanding the mapping between
macro and micro levels.
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activity is transformed into information and how that information is
stored and retrieved) provides the appropriate link, while for Norman,
computational processes fulfill that requirement.

Crick (1979) has summarized several important constraints for a
theory of human behavior. One is the nature of the environment and
our interaction with it; that is the macro description of the events
under study. Another set of constrainis is related to structure and
processes of the central nervous system. The multitude of neurons
(approximately 10'') and connections between them (approximately
10%%) together with their relatively slow action (in the order of millisec-
onds) would seem to be essential considerations. A third set of con-
straints relate to the global characteristics of the neural system; the fact
that there are precise connections between neurons in some parts of the
central nervous system and that there are discrete areas in the cortex in
which activity is of the distributed nature of an associative net. In
addition, it is necessary to avoid conceptions that rely on the intelli-
gence of single neurons or a homunculus for explaining the emergence
of organized (cognitive) activity.

In modeling the micro structure of human behavior it would be most
desirable to rely entirely on neuroscience and biochemistry for defini-
tion of structures and processes. Unfortunately, there are huge gaps in
our knowledge of the anatomy and physiology of the brain and there
are enormous technical and ethical obstacles to gathering the desired
information (Crick and Asanuma 1987). The obstacles are so signifi-
cant that any comprehensive account of the micro structure of cogni-
tion must postulate a large number of hypothetical structures or
processes that have no definite support from neuroscience.

While PDP models are not intended to describe the detailed neural
implementation of behavior (Rumelhart and McClelland 1987: 138)
they are said to be neurally inspired (McClelland et al. 1987: 11;
Norman 1987: 535) at least to the extent of the multitude of many-to-
one and one-to-many connections. A pervading attitude within the
PDP enterprise appears to be at least approximately consistent with
Crick’s view: PDP models tend to be loosely constrained by some
established facts of neuroscience while PDP theorists take license to
supplement the facts with additional processes or structures that have
no neurological support. The clallenge is to motivate from first princi-
ples the selection of these additional processes. Without first principles
to bootstrap the selection process, proposed processes can be consid-
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ered little more then Kiplinese ‘just so stories’. For this paper the issue
we will focus on is associative memory: what are its characteristics,
what are the essential mechanisms, and what first principles might we
appeal to in constructing an account of it?

Associative memory

The essential components of an abstract, computational model of the
brain can be described in terms of synaptic connections within neural
networks (Ballard 1986: 67) or an associative memory in which pat-
terns of activity represent modal siates for perceptual and cognitive
behavior (Baird 1986). An associative memory is a network of intercon-
nected elements that produce distinctive patterns in parallel outputs
from patterns of excitation in parallel inputs. The macroscopic pattern
of a modal state reflects the mass action of microscopic neural events
throughout ihe associative memory. Knowledge resides in the pattern
of neural connectivity rather than in any single neuron or group of
neurons or in any feature processing subsystems.

The parallelism of the system is important from the timing point of
view. If transitions between cognitive (macroscopic) states are as fre-
quent as two or three per second (McClelland et al. 1987: 12; Ballard
1986: 67) and the transitions between neuronal (microscopic) states
require several milliseconds, serial processing will be too sluggish. Thus,
the concept is of an associative network that responds to different
inputs by settling into distinctive but distributed states. The strength of
the connectivity between elements and the subtle interactions between
activation and inhibition rules determine the reliability of the settling
state in response to specific inputs. Presumably cognition is based on
the assembly and disassembly of macroscopic patterns of activity at
rates that range at different levels of organization from a few per
second to a few per lifetime.

In a neural network there are probably a countless number of
potential modal states. Through learning or experience, some of these
will become preferred states (solutions) in that they are the ones most
likely to be activated during normal activity. We assume that a large
number of latent preferred states can coexist within a neural network
although that large number will be considerably smaller than the
countless number of pre-existing potentialities. We further assume that
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only one modal state is active at any one time, and that a neural
network progresses through cycles of activation — deactivation —»
activation...and so on. These assumptions about associative memory.
appear to be generally consistent with prevailing connectionist views.
Crucial issues for this view are how specific modal states acquire their
preferred status and, once several are established, how a state migh. be
selected and re-selected for activation.

Simulated annealing: Crystal formation as an optimum solution

One regularity accounted for by Thermodynamic Law is the tend-
ency, noted by McClelland and Rumelhart (1988: 70), ‘for all physical
systems to evolve from highly energetic states to states of minimal
energy’. This is an approximate characterization of Boltzman’s ordering
principle which specifies that the direction of natural change within an
isolated system is towards a state of maximum homogeneity. It is the
principle behind the order-from-cooling analogy, as exemplified in
crystal formation, which has been inspirational for PDP modelers as a
means of showing how a neural network might settle into a modal state
or how it might achieve an optimum solution (e.g., Hinton and Sejnow-
ski, 1987; Hopfield and Tank, 1986; Smolensky 1987).

For the crystal formation analogy it is important to appreciate that a
reduction in thermal agitation reduces molecular kinetic energy. Some
of that krnetic energy is lost to the surround and the lower level of
thermal agitation also permits some potential energy, which is stored
within molecular bonds, to be given up and lost to the surround. The
most orderly state is one that ends up at the lowest (minimum)
potential energy state. Thus, a pure crystalline substance (regular
molecular pattern) is in a minimum potential energy state (lattice
configuration) and can be said to offer an ideal solution (symmetric
lattice). An impure crystalline substance is one in which the alignment
of the lattice pattern is no* identical throughout the crystal. Potential
energy is low; it is minimized in local regions, but it is not minimized
globally. This could be referred to as a nonoptimum solution. In some
circumstances it might be viewed as a near-optimum solution and in
others, as an error. :

A pure crystal can be obtained by first heating the substance to
break the crystalline bonds and then applyir.g an appropriate cooling
schedule. With careful cooling (i.e., slow reductions in temperature over
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the critical range at which the crystal forms), a portion of the substance
will, by chance, crystallize first, and adjacent portions will take on the
same structure. That structure will thereby permeate through the sub-
stance, This type of careful cooling is termed ‘annealing’. In contrast,
rapid cooling (or ‘quenching’) will precipitate crystal formation in
different portions of the substance at the same time. The orientation of
the crystalline structure will not be identical throughout, The meeting
of different orientations in the structure constitutes an impurity or an
intersection at which energy is not min:mum. Thus, potential energy of
the crysta! lattice is minimized locally in most parts of the crystal but it
is not minimized globally.

Computational temperature

It is this capacity of molecular configurations to locate globally
opiimum solutions in configuration spaces having many thousands of
local minima that has guided the development of some PDP models.
Such systems with many local solutions competing with a global
solution are referred to as frustrated systems. Computational tempera-
ture (fig. 3), as an analog to thermodynamic temperature, is reduced
slowly over the critical range so that the system settles into a ‘harmoni-
ous’ or ‘minimum energy state’ (Hopfield and Tank 1986; Smolensky
1987). This minimum energy state is also characterized as an attractor
state (McClelland and Rumelhart 1988; 70). Nevertheless, it should be
noted that this system does not learn; there is no residue from the

PDP
ASSOCIATIVE  MEMORY

MACRO STATES
GLOBAL (ENSEMBLE) PATTERNS
HARMONY, MINIMUM ENERGY

CONSTRAINT SATISFACTION
COMPUTATIONAL TEMPERATURE

MICRO STATES
LOCAL PATTERNS

Fig. 3. Many PDP models account for the mapping between macro and micro levels by constraint
satisfaction.
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achievement of an optimum state that will help the system locate that
same state more easily on a subsequent heating and cooling cycle.

Constraint satisfaction

One welcome feature of the PDP appraach is that some models have
sought to deal with the issue of how a preferred state can be selected
for activation (recognized) without the need for an a priori global or
macro-state reference (i.., an internal representation, a set point, or
homunculus). As is evident from the crystal formation analogy, one
approach taken is to minimize or maximize a natural global (macro)
process within the system by ordering its elements (fig. 3). Smolensky
(1987) has chosen to maximize harmony within the network (i.e., to
achieve a maximally self-consistent state), while Hopfield and Tank
(1986) have chosen to minimize computational energy. There is no
crucial distinction to be made between maximization and minimization
approaches which can both be thought of as resulting in optimization
via constraint satisfaction.

In essence, the problem is one of ensuring that a regular input can
reliably produce the same activation state but one that differs from
states produced by other inputs. A beginning siate of random activity
in which elements of the model are stochastically activated is assumed.
The level of random activity is used to define a computational tempera-
ture. At a high computational temperature the random activity is so
high that a regular input cannot exert any ordering influence. As
computational temperature is lowered the level of random activity is
also reduced and the regular input can start to exert its influence. The
excitatory and inhibitory connections interact with the input to guide
the system towards the desired state. As temperature is further lowered
random activity ceases and the system becomes frozen in a final state.

The decrease in computational temperature must be scheduled care-
fully. A sudden decrease (‘quenching’) may locate part of the system in
a stochastically determined minimum that is a locally (but not a
globally) optimum solution.. Carefully scheduled cooling (simulated
annealing) can result in the system settling into a global optimum.
Under the appropriate schedule the regular or coherent input gradually
establishes its influence over the disorganized activity of the system in a
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manner that results in convergence onto a globally defined optimum
state {(Metropolis et al. 1953). |

Solutions as attractor states

Terminology from nonlinear dynamics is occasionally employed in
the connectionist literature (e.g., Baird 1986; Hopfield and Tank 1986;
Skarda and Freeman 1987). When a system settles on a solution it can
be said to converge onto an attractor !. The initial conditions from
which the system converges onto an attractor are within the basin of
that attractor, and the entire set of initial conditions that leads to
convergence on a given attractor constitutes the basin for that attractor.
Multiple attractors coexist in some systems. The selection of an attrac-
tor state, although a deterministic function of the initial conditions, is
often difficult to predict because of limitations in measurement of the
initial conditions. In particular, the difference between iaitial condi-
tions that are in the basin of one attractor versus another can be so
small that it cannot (even in principle) be measured reliably and the
system trajectory can be said to be infinitely sensitive to initial condi-
tions.

Categorical perception

One intriguing aspect of this terminology for psychology is that it
may be used as a description of categorical perception. Initial condi-
tions in the form of stimulus information, that may be discriminated
with the assistance of special instrumentation, are classified as identical
by the unaided human perceptual process. Thus, the terminology of
attractor states represents an alternate style of description for behavior
that is often described in terms of templates, schemes, or internal
models.

An analogy from Baird (1986) for categorical perception is that of a
flexible buckling column with a deformable collar. A vertical column
will remain straight with the addition of a downward force until a
threshold is reached, when it will buckle or bow to an extent de-

' An eattractor defines an invariant solution shared by multiple trajectories originating from
different initial conditions. It is a global symmetry that relates Jocal trajectories.
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termined by the force. The column can buckle in any direction. The
precise direction taken is determined by micro fluctuations in the
column at the time that the vertical force exceeds the threshold re-
quired to initiate the buckle. The collar will be deformed by the buckle
and more deformations can be crecated by releasing and reapplying the
vertical force. Nevertheless, a buckle in the general direction of an
existing deformation will not create a new impression but will, instead,
be captured by the existing deformation. Where once behavior (the
direction of buckling) was unconstrained it is now constrained to
discrete states that depend on prior experience. A memory has been
created and that memory may be described succinctly in terms of
maltiple latent attractors.

Prigogine’s principle: Order through heating

The crystal formation analogy may be viewed as drawing on an
order-through-cooling principle to explain emerging organization in a
cognitive system. We now return to our earlier discussion of micro and
macro descriptions so that we may contrast ‘order through cooling’
with ‘order through heating’. Specifically, in many closed and open
systems, flows of energy (closed systems) or of energy and matter (open
systems) can create a spontaneous transition from one ordered state (or
from an homogeneous state) to a new ordered state in a manner that is
not consistent with Boltzman’s ordering principle.

Self-organization in a closed system

The Rayleigh-Benard instability offers a classic example of a closed,
self-organizing system in which order arises out of a heating process
(Haken 1981; Berge et al. 1984). A homogeneous layer of thermally
expansive fluid, if heated uniformly, develops a regular structure of
thermal convection rolls with parallel, horizontal axes. As the fluid is
heated from below, a vertical temperature gradient is created and the
lower layers of liquid expand to become less dense. At small tempera-
ture gradients the tenduncy for the lower and lighter (less dense)
portions of the liquid to be displaced by the upper, heavier (more
dense) portions is resisted by the dynamic viscosity (friction) of the
liquid. At this temperature only heat conduction occurs. Once the
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temperature gradient becomes sufficiently strong, heat conduction is
replaced by convection of matter resuiting in the formation of convec-
tion rolls. Some useful implications concerning the role of macro-micro
interactions can be drawn from the order-through-heating principle as
manifested in the Rayleigh-Benard instability.

A symmetry-breaking nonlinearity

The first is that the motion threshold of the temperature gradient is a
nonlinearity produced by a competition between forces, Thermal forces
compete with gravitational and viscous forces for control over the
matter transport. The convection rolls (circular matter transports)
emerge when the temperature gradient generates sufficient force to
overcome the gravitational and viscous forces. In general terms, the
system response to a gradual increase in temperature gradient is
nonmonotonic. A symmetry break occurs at a threshold temperature
gradient. One state (in this case a Liomogeneous or disordered one)
transitions suddenly into a qualitatively different state. Prior to the
symmetry break the system response is linear in that an increase in
temperature gradient has a monotonic effect on thermal forces. The
abrupt transition to a qualitatively different state represents a nonlin-
ear transition which is then followed by another region of linear
behavior. More complicated patterns may emerge when further symme-
try breaks occur at higher temperature gradients.

Micro-macro action

A second insight to be drawn from the convection example is that a
transition from homogeneity to structure (a symmeiry break) is under-
stood more clearly by disfinguishing the micro from the macro states.
At first, heating increases molecular thermal agitation in the micro
states which, in turn, increases the kinetic energy exchanges between
molecules (conduction) without changing the lattice configuration of
thie homogeneous macro state. It is these forces which lead to thermal
expansion and thus to the reduced density of the heared liquid, that
have an important role to play in breaking the symmetry of the
homogeneous lattice configuration by initiating and then sustaining the
molecular transports forming the convection rolls (the mew macro
state). The rolling motions are sustained by ihe temperature gradient
that occurs because the liquid at the bottom of the vessel gains heat
while the liquid at the top loses it to the environment (fig. 4).
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CONVECTION
THE EVDLUTION OF ORDER (N A CLOSED SYSTEM

MACRO STATES
COHERENT MATTER, ENERGY.

AND MOMENTUM TRANSPORTS \
o000 \

SYMMETRY DBREAK
(VA MICRO FLUCTUATIONS)

MICRO STATES
THERMAL (MOLECULAR) AGITATION

Fig. 4. Order in a closed system evolves through a spontaneous symmetry break initiated by micro
fluctuations and sustained by competition between heating and cooling processes.

Macro selection via micro fiuctuations

In a rectangular vessel the axes of the convection rolls are parallel to
the shorter pair of sides. The direction of motion alternates between
adjacent rolls but the motion of a specific roll may, when viewed in
cross section, be clockwise or counterclockwise. The selection of a
direction is made by a fluctuation at the time of transition from
homogeneity to order. With the increase in thermal agitation portions
of liquid are displaced in random fashion. At one moment, by a chance
fluctuation, more will be displaced in a direction that favors one
pattern over the other. At low temperature gradients such fluctuations
are damped out. At the critical gradient a fluctuation generates a mini
roll that enslaves other nearby elements in that direction of motion.
The progressive enslavement moves quickly through the liquid to
establish the convective transport pattern. This is a process that can be
referred to as a spontaneous break in the symmetry of the homoge-
neous state. '

Macro-micro action

Because the pattern has two equiprobable states the system is said to
bifurcate at the transition from homogeneity to order. That transition
point is known as the point of bifurcation (see fig. 5). The directional
characteristic of the macro pattern is thus led by a stochastic fluctua-
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13. 3+

Fig. 5. The bifurcation diagrain for the Rayleigh-Benard convection. R, is the Rayleigh number

(a dimensionless number) prcportional to the ratio of the dynamic viscosity of the liquid and

temiperature gradient. & is the velocity of a specific roll. In an experiment free of imperfections,

the rolls engendered at K, have equal probability of rotating in either direction. This is expressed
by the existence of two branches denoted by &, and §_.

tion at a micro level; a micro—macro action. However once selected, the
macro pattern enslaves the micro motions via a macro-micro action.
The macro organization ensures that one of the previously equiprob-
able paticrns now dominates system behavior.

One feature of convection not found in crystal formation is the
coexistence of multiple ideal solutions. However, like crystal formation,
there is no residue that can be classified as memory and to achieve that
we must turn to an example of an open system in which there are flows
of matter as well as of energy.

Self-organization in open systems

The periodic assembling of a nest by a population of social insects
using pheromone gradients provides an illustration of how generic
symmetry breaking and selection mechanisms can function in a biologi-
cal system. In summary of an account by Kugler and Turvey (1987,
also see Deneubourge 1977; and Grasse 1959). African termites are
known to construct nests from their waste deposits. After an initial
random-deposit phase they commence construction of pillars, With
some frequency, neighboring pillars can take on a mutual curvature
towards a viriual midpoint so that an arch is constructed. This is
followed by the construction of a dome over the supporting pillars and
arches, and then a new construction cycle of pillars, arches, and a dome
may begin (fig. 6). This structure becomes the nest in which the
termites live and breed. The construction involves the coordination of
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RANDOM
DEPOSIT

BUILDING \
DOME

' BUILDING
@ PILLARS

BUILDING
ARCHES

Fig. 6. A building cycle commencing with a random deposit phase and proceeding through pillar
construction, arch construction, dome construction and a returr to the random deposit, where the
cycle may start again (adapted from Kugler and Turvey 1987).

several million essentially identical elements (the termites) without the
benefit of rules or of a plan.

A symmetry-breaking nonlinearity

Construction starts with disorganized behavior in which termites fly
through an area leaving behind waste deposits which contain a chem-
ical pheromone that attracts other termites. Although the potency of
the pheromone decays relatively quickly the frequency with which
insects fly within their detection threshold of the pheromone field from
an active site before it decays will, if a sufficient number of insects
participate, become relatively high. Insects that fly within their percep-
tual threshold of an active site will change their flight trajectory to pass
over that site and will deposit waste on it. Thus, a small number of
preferred deposit sites can begin to emerge.
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NEST BUILDING
THE EVOLUTION OF ORDER IN AN OPEN SYSTEM

neuro-perceptuat
% - coupling
MACRO storage mode »
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diffusion
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storage mode : )
{individual insects) _/% %

3 %

Fig. 7. The autocatalytic cycle of pillar construction by social insects (adapted from Kugler and
Turvey 1987).

Micro—macro action

The locations of the preferred sites are selected through fluctuations
in individual flight trajectories at the micro scale (of individual insects).
Once a particular site is selected an autocatalytic reaction enslaves the
ensemble of insects to form a macroscopic flight pattern organized by
the pheromone diffusion field (fig. 7). The result is the formation of
pillars of waste at preferred sites.

Emergence of a higher-order pattern

Arches begin to form when the pheromone fields of neighboring
pillars strengthen (in terms of insects’ perceptual thresholds) to the
point that they begin to overlap. A mutual interaction between two
sites can have a biasing effect that results in deposits accumulating
more rapidly on the proximal sides of the two sites. Curvature in the
pillars fcliows which may result in the two pillars eventually meeting to
form an arch. Thus, another threshold is crossed and a new macro
property emerges. When several pairs of pillars meet new field proper-
ties emerge which result in the construction of a roof.

Macro selection via micro fluctuations

As in the Rayleigh-Benard instability the specific macro pattern of
sites that emerges from homogeneity is selected by virtue of stochastic
fluctuations within the micro processes (a micro-macro interaction). A
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threshold is manifest that identifies a functional boundary separating a
nonequilibrium relaxational dynamic from a ‘far-from-equilibrium’
self-organizing dynamic (cf. Prigogine and Stengers 1984). In the equi-
librium condition insect behaviors are independent of one another. In
the far-from-equilibrium condition the behaviors of individual insects
are highly coordinated.

Macro—micro action

There is no requirement for the individual elements to communicate
with each other although it might be said that information is fed back
to individual elements from the macro level of organization via the
pheromone field. The organization is by virtue of the mutual coherence
of behavior; in particular the interactive dynamic of the termite sensory
apparatus (micro) and the pheromone information field (macro).
Through this process a mao . pattern of organizing centers is assem-
bled and this pattern, once established, effectively organizes the flight
trajectories of individual insects (a macro—micro action).

Towards an open systems account of cognition
Dissipative structures

Patterns created from the changing balance of forces as induced by
flows of energy (or of energy and matter) are known as dissipative
structures (Prigogine and Stengers, 1984). Essentially, dissipative struc-
tures are new forms of order that emerge via state transitions when
energy flows exceed the dissipative capacity of an existing structure.
They emerge as a result of the instabilities produced in existing
structures by those high rates of energy flow. The continued viability of
a dissipative structure is maintained by these flows through the system
with one causal influence residing in the forces that dissipate some of
the energy into activity at the micro scale.

The continuous flow of energy is critical. If termites were con-
strained from flying through an area for a time the pheromone fields
would decay and the pattern of organizing centers would be disassem-
bled. Similarly, if the heat source is removed from beneath a thermally
expansive liquid the convection rolls will decay and the system will
return to the homogeneous state of stable equilibrium.
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Closed versus open systems: Flows of matter and creation of memory

There 1s, however, an important distinction to be made between the
convection and nest construction systems. In contrast to a closed
system (e.g., the Rayleigh-Benard instability), an open system (e.g., nest
construction), does not return to the homogeneous state at cessation of
the energy (and matter) flows. There is a physical instantiation of the
organization (the nest structure), which results specifically because of
the open (versus the closed) nature of the system. This physical
instantiation (which will eventually be torn down by Second Law
processes) continues to constrain the flight trajectories of the insects as
they fly through the nests and might be viewed as a memory of the nest
building activity. Bertalanffy (1975) has argued for an open-systems
account of bijological processes (including cognition) and here we
extend his arguments by observing that a principled account for the
origin of symbolic, rate-independent constraints normally characterized
as memory can be found in the dynamic, raie-dependent (Second Law)
processes of open systems.

Self-organization: A nonrepresentational account

Self-organization is characterized by transitions to new states of
order in the absence of any a priori material embodiment (occupancy
of physical degrees of freedom) that specifies or represeits a set point,
representation, template, or schema in the medium from which the
pattern is constructed or in the input to the system; that is the heat
flow or the temperature gradient in conveciion or the transport of
energy and matter by termites in the construction of nests (comtrast
with fig. 8). Furthermore, there are no special purpose elements. Haken
(1981) attributes the emergence of structure to an order parameter; in
essence an activity that enslaves other activity 2. There are, however,
constraints that may be viewed as control parameters; for example
some characteristics of a convection pattern are determined by the
shape of the holding vessel and perceptual thresholds determine the
value of the order parameter that induces autocatalytic amplification of

2 A self-evident example of an order parameter at work is found in an avalanche. A rolling
boulder imparts its motion to other boulders that join the system, i.e., the motion of one boulder
enslaves the motion of others.
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Fig. 8. Artifactual-machine solution for the construction of an arch. The long range correlation
required for the cooperative building of the arch is accomplished by a small scale blue-print (plan,
frame, schema, etc.) of the large scale project. The actions of the individual workers are
constrained according to restrictions specified in the blueprint. External regularity is intimately
tied to internal regularity of the blueprint. Of particular importance is the fact that the blueprint
must exist prior to and independent of the actual construction. In general it takes an agent (i.e.,, an
architect) more complicated than the phenomenon being explained to account for the origin of the
blueprint (adapted from Kugler 1986).

fluctuations in termite nest construction. Nonlinearities (thresholds,
switches, hysteresis, damping, inertia, saturation) abound in self-
organizing systems and are influential constraints on the emergence of
order and on its final state.

Although some characteristics of an emergent order are unpredict-
able (for example, the particular sites selected for termite nest construc-
tion) the forms that emerge can be recognized as characteristic of the
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system. Nevertheless not anything is possible. The emergent properties
remain bounded within a range of possibilities, Termites may build
pillar- or arch-like structures but they may not build representations of
artifacts such as the lattice work found in the Eiffel Tower or the
detailed features of the Statue of Liberty. This feature of open systems
may also be seen as characteristic of human cognitive behavior; essen-
tially unpredictable in detail but bounded within a range of identifiable
patterns.

Generic mechanisms for self-organization

A comprehensive explanation of the emergence of structure from
homogeneity (or the transition from one ordered state to another)
requires a macro description of the structure {the emergent properties),
a micro description of elemental activity, and some consideration of the
mapping (or the interaction) between the micro and the macro states.
In particular, appreciation of fluctuations in the micro structure is
essential for understanding a bifurcation (i.e., selection). The emer-
gence of new macro properties in a self-organizing system can be said
to result from nonlinear transitions induced by amplification of
fluctuations in the micro structure when the system is forced far from
equilibrium (Prigogine and Stengers 1984: ch. 6). Organization emerges
in the absence of any prior representation of that pattern either in the
input, the medium, or rules that map micro to macro states and, once
established, that organization serves to constrain system behavior.
Again, explanation is aided by descriptions of both macro and micro
states and an understanding of how the interaction of cooperating and
competing forces can lead to a nonlinearity which, in turn, leads to a
creation of new forms not specified in the micro structure.

Emergence of erder: Cooling versus heating

The statement by McClelland and Rumelhart (1987) that all physical
systems tend to a minimum energy state is generally correct but
misleading in the sense that, as is evident from a consideration of
dissipative structures, local fluctuations can produce local increasss in
energy that create new states of order. The states of unstable equi-
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librium that are achieved in the self-organizing systems described above
might also be viewed as solutions in the sense of the term as used in
Boltzman, Harmony, and simulated annealing models. There is, how-
ever, a distinction to be drawn. One type of solution is achieved
through heating and the other is achieved through cooling.

On the surface, the distinction between the two processes may not
seem to amount to much. Carefully scheduled cooling leads to a
singular and optimum state (a state of stable equilibrium) with a high
probability. That state can be disassembled and reassembled by reheat-
ing the system and then allowing it to reseitle by cooling with the
possibility that it will settle into a different state. Heating can also lead
to an ordered state (one of unstable equilibrium) which can be disas-
sembled and then reassembled first by cooling and then by reheating.
The cooling and reheating may allow the system to settle onto a new
state via inverse bifurcation.

There are, however, some noteworthy differences. For systems that
organize by increasing energy flows there appear to be solutions within
solutions. This is found in the Rayleigh-Benard convection in which
new patterns emerge as the temperature gradient is increased, eventu-
ally giving way to chaos. It is also found in iermite nest construction
where a first solution is elaborated into a new and distinctive one. In
particular, this example suggests that the elaborated solution retains
much of the character of the first but also has additional distinctive
features. It might be characterized as a higher-order solution or, in
Gibson’s (1979) terms, a higher-order invariant. In some systems the
elaboration of solutions can proceed through a considerable number of
bifurcations before there is a transition to chaos (e.g., predator—prey
relationships as modeled by the logistic equation, May 1976).

There is another important objection to applying the sudden emer-
gence of orderly structure in the phase transitions that accompany
cooling to the phenomena of cognitive processes. As noted by Haken
(1981: 41-42) ‘life processes slow as temperature drops; in fact they
stop completely at very low temperatures. Living organisms are kept
alive by a constant supply of energy and matter which they take up and
process. The more highly developed creatures (i.e., the warm-blooded
animals) are not even in thermal equilibrium with their surroundings.’
Haken concludes that life processes cannot be based on a cooling
principle. The solutions achieved by heating are maintained only by a
coninuous flow of energy (a closed system) or a continuous flow of
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energy and matter (an open system). In this regard the heating princi-
ple is more consistent with the realities of biological function.

In the next few pages we deal with two parallel distributed models
that incorporate some self-organizing features. The first is consistent
with a closed system account and is modeled with cellular automata
(Langton 1986). The second is consistent with an open system account
and is based on EEG data collected from the olfactory bulb of the
rabbit {Baird 1986).

Artificial life: Cognition in a closed system?

To model ilic emeigence of structure with increasing temperature it
would be necessary to develop a system in which low temperatures lead
to macroscopic homogeneity and high temperatures produce macro-
scopic chaos. Interesting properties would have to emerge in the
intermediate temperature ranges. To be fully consistent with the argu-
ments outlined above, those interesting macro properties should be led
by fluctuations in the micro states but should otherwise be self-organiz-
ing. An autocatalytic effect in which micro fluctuations are amplified
into self-sustaining macro properties is likely to provide the mecha-
nism.

Such self-organizing patterns can be found in systems of cellular
automata. Cellular automata are mathematical models for complex
natural systems in which there are local interactions between large
numbers of simple identical components (Wolfram 1984). These sys-
tems, which are best known through Conway’s game of Life (Atkins
1984), are essentially simulations in which the cells of a matrix can take
on one of a finite number of states over successive cycles of the
simulation. Matrices are generally one-dimensional (1 X n) or two-di-
mensional (n X n). A typical two-dimensional automaton may have
64 x 64 cells with each cell capable of taking on one of eight possible
states.

Other important elements of the simulation are a quiescent state, a
neighborhood, and a transition function. One of the possible cell states
is defined as a quiescent state to represent nonactivity. A neighborhood
is a pattern of nearby cells that can be affected by an active cell and
will generally include the active cell itself. The transition function
specifies how an active cell affects its neighborhood (i.e., what type of
states it generates in its surroundings for the next cycle).
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Self organization in cellular automata

A cellular automaton may be viewed as a massively parallel system
with local connections. A simulation is started with a seed in which
some of the cells are switched into active states. Because no pattern is
specified by the transition function any new pattern occurring in
successive iterations must be an emergent property. The system is
deterministic in that the same initial conditions and transition function
will produce the same behavior. The emergence of a structure or
pattern will constitute a solution in the same sense that the settling of a
PDP network constitutes a solution.

Langton’s (1986) investigations of artificial life with cellular au-
tomata are of particular interest. He specified a parameter, I', which
determined the relative level of neighborhood activity generated on
successive cycles by an active cell. The I" parameter can be viewed as a
strength determinant for an autocatalytic effect that generates new
activity from existing activity. That parameter might also be viewed as
a measure of system temperature.

Order ;hrough heating

Langton started his simulations with a randomly generated transi-
tion function constrained by I, and a randomly generated seed. For a
I' of zero the activity in the next cycle must, by definition, collapse
onto the quiescent state. For a non-zero I', activity continued though
succeeding cycles, but for small I', it quickly collapsed onto the
quiescent state. Beyond some threshold, activity continued in a self-sus-
taining mode. As I" was iacreased from that threshold the generated
activity progressed through the stages of emergent fixed or propagating
single states, several species of emergent periodic propagating struc-
tures that met to interactively generaie new fixed or periodic structures,
and finally chaos. In Langton’s words, ‘For low I' temperatures we
observe precipitate-like behavior where everything is stable and nothing
changes, while for high temperatures we observe the behavior of a hot
gas where everything changes and nothing is stable. For temperatures
in between, where we have the chance of both stability and changeabil-
ity, we observe more interesting dynamics’ (1986:128). The ‘more
interesting dynamics’ result in structures of sufficient complexity and
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variety that they might mirror the generative complexity of a relatively
simple cognitive system.

Computational remperature

Langton’s simulations suggest a model in which the cognitive system
works most effectively over a narrow range of computational tempera-
tures. Low temperatures lead to relatively low levels of inactivity and
simple patterns. Higher levels of activity and more complex patterns
are obtained by increasing computational temperatures. The variations
in the metastable regimes between the stable quiescent state (at low
temperatures) and the chaotic state (at high temperatures) generate the
most interesting and creative activity. Increases in computational tem-
perature lead to increasingly complex patterns until the system breaks
down by transitioning into chaotic activity. It is in this metastable
region prior to chaos that the mapping from micro states to macro
behavior remains coherent yet is sufficiently complex to pose a chal-
lenge to understanding the nature of that mapping.

Learning and memory

In our initial presentation of the required features for associative
memory we noted that the system must be able to generate ordered
states from homogeneity but that it must also be able to select those
emergent states more readily on subsequent occasions (that is it must
learn). One challenge that remains for the cellular azutomata model is to
show that the system can learn. Possibly as a function of repeated
exposure to inputs or to repeated activation of the system the transition
function might evolve from one that produces no ordered states to one
that produces useful patterns. Langton’s system is, however, a model of
a closed system and, from the perspective of our earlier discussion,
flows of matter as well as of energy (i.e., an open system) must be
modeled to permit the emergence of a memory.

Order from disorder in neural networks: Cognition in an open system?

An associative memory model proposed by Baird (1986) has distinc-
tive spatial patterns of neural activity representing modal states for
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distinctive recognition and response behaviors. The empirical data that
underlie this model are EEG recordings collected by Freeman and his
associates from the olfactory bulb of the rabbit (see Freeman and
Skarda 1985; Skarda and Freeman 1987). The problem faced in this
work was to isolate distinctive patterns of behavior that could serve to
identify invariant odor classes.

Associative memory in the olfactory bulb

The EEG recordings showed that odor recognition is accompanied
by space-time patterns of peak RMS neural activity distributed
throughout the bulb. Skarda and Freeman (1987) concluded that every
neuron in the olfactory bulb participated in every discrimination, and
that discrimination between odors was based .on the assembly of
different patterns of neural intensity during inhalation. Baird (1986)
took this as evidence that the olfactory bulb has no feature processing
subsystems and can best be described as an associative memory in
which the emergent spatial inhomogeneity results from the pattern of
strengths in synaptic connections.

The fact that different space-time patterns of peak RMS activity are
generated in response to different odors is suggestive of behavior like
that modeled with the interactive activation and competitive networks
of McClelland and Rumelhart (1988). In those networks a single
pattern of connections will settle into different states based on the
pattern of input strengths. The emergence of different patterns depends
considerably on the interaction between excitatory and inhibitory
processes (fig. 2). By virtue of this interaction a number of different
latent states can coexist within the same set of connections. In the
olfactory bulb these constitute the set of latent activity patterns that
represent the odor memories or the invariant odor classes to be
recognized.

From observations on the olfactory buib Baird (1986) developed a
view of the entire cortex as a set of associative memories intercon-
nected in parallel. Some of the challenges for this view are to specify
how a specific pattern of activity is selected, how the system transitions
between states, how activity permeates through the system to select
particular sets of patterns in the various associative memories that
correspond to particular behaviors, how to account for both the rapid
changes between some cognitive states and the relatively long-term
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persistence of others, and how new patterns (including the first) are
established.

Self-organization in the olfactory bulb: Order through heating

The recognition of a learned odor is postulated to occur via a process
of order emei zing from disorder, or pattern from homogeneity as in the
Rayleigh-Benard convection. EEG data show a brief transition from a
low-level state of irregular activity to the high amplitude pattern
associated with a specific odor. Thus, recognition occurs in an associa-
tive memory when the system is driven from a homogeneous state of
low-level, stochastic neural activity beyond the threshold of stability,
through a bifurcation which places it in the basin of an attractor.
Within the olfactory bulb the order parameter that produces the
symmetry break via the bifurcation is thought to be the higher energetic
state that accompanies inhalation. More generally the order parameter
may be associated with energy dissipation through the system; that is
the metabolization of glucose transported by blood flows (Iverson
1979: 70). ' ’

Macro selection of odor basins via biasing inputs

Given the existence of multiple latent states in close competition
some mechanism is required for reliable selection of an appropriate
modal state. In a system such as the Rayleigh-Benard convection the
order parameter drives the system to the point of bifurcation where a
stochastic fluctuation is amplified to lead the system into a new modal
state. Within an associative memory stochastic fluctuations presumably
have some effect but for reliable classification of inputs those inputs
must act as low energy biases to lead the system into the required
attractor basin as it is forced from its staie of stable equilibrium. In
that sense the model employs a mechanism that permits an adaptive
versus a spontaneous symmetry break from the homogeneous state.

Transitions between odor basins

A reset mechanism is required to allow the system to settle into
different modal states that constitute recognition of different inputs.
Baird (1986) suggests relaxation back to the resting state via inverse
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bifurcation. While he discounts the possibility of a catastrophic transi-
t.on induced by an input fluctuation as a means of placing the system
in a different attractor basin such catastrophic transitions are found in
many physical systems. This would, however, require a higher level of
input energy than is required for seiection of a new state via the inverse
bifurcation route.

Whether input changes can produce energy fluctuations needed for
catastrophic transitions is unknown but such a process would be
consistent with the problem solving experience of transitioning sud-
denly from an incorrect to a correct solution while continuing to
maintain a high level of effr: . Transitions via iuverse bifurcation
would be more like the process of achieving a correct solution by
putting the problem to one side for a time. Inverse bifurcation and
catastrophes are not mutually incompatible processes and both may
have a role to play.

Categorical odor perception

The appeal to attractors and basins of attraction aliows inputs to be
characterized as noisy or incomplete versions of an attractor. Different
inputs that drive the system into the same attractor basin (and the
number of these is potentially infinite) and therefore cause the system
to collapse onto the same attractor will be classified as identical. This
view of how the macro response of an associative network is assembled
is consistent with recent discussions of categorical perception (e.g.,
Harnad 1987). In addition, Skarda and Freeman (1987) have observed
the occasional failure to recognize odors. This appears to result in a
disorderly or chaotic attractor that cannot be classified, and may
generally be associated with indecision (Baird 1986).

Emergence of distributed, high-order patterns

Given a system of multiple, interconnected associative networks, the
output from one system that constitutes an input for a second system
can influence the state of the second system by pushing it into a
different attractor basin. It is by this process that change can permeate
through the system and that different combinations of associative
states can emerge. As each and every associative network within a
mature adult will have multiple latent states the potential combina-
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toria! complexity is enormous. A reasonable extension of Baird’s views
wouli have some associative networks (e.g., those most directly con-
nected to the environment) transitioning between states at a relatively
high rate (2 to 3 times per second). Others (e.g., those that influence
persistent goal-directed activity) are likely to transition between states
much less frequently, possibly at intervals of minutes, hours, days, and
years.

Learning and differentiation

The differentiation of attractors is accomplished via the modification
of the coupling within the network. As is consistent with learning rules
employed ian PDP, excitatory comnections may be strengthened by
concurrent activity. The particular pattern established for a new input
is most likely an arbitrary function of the particular peaks in stochastic
activity at the time of input and of the activity generated by the input.
Where specific inputs are repeated with sufficient frequency, patterns
will emerge once connection strengths exceed a critical threshold much
in the manner that an arbitrary pattern emerges in the termite nest-cosn-
struction field. Once connection strengths have been established the
input activity must emerge as a more powerful lead in the direction
taken by the subsequent activity within the network,

Nevertheless, the EEG data of Skarda and Freeman (1987) indicate
that patterns are not fixed. On return to a previously learned odor
(apparently some weeks later) the pattern could differ from the one
previously evoked by that odor. In general, the learning of a new odor
appeared to result in dynamic reconstruction of the whole patterned
response set. It is this process of dynamic reconstruction that may
permit progressive differentiation of stimulus information.

Associutive memory as a dissipative structure

Baird’s associative memory model may be viewed as connectionist
but as one that avoids somc of the major difficulties we see in the
general trend of PDP modeling. It addresses the problems of mappings
between micro and macro states in a manner consistent with the
principles of self-organization. Baird’s view of cognitive process as
based on dissipative dynamics provides a perspective that we view as
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critical to a model of cognition that heeds the realities of biological
Processes.

Learning and memory

The central nervous system is open to flows of both energy and
matter. In that sense it is more like the termite nest construction system
than like any of the other thermodynamic systems we have discussed in
this paper. Not only is it possible to select modal staies but experience
can create a preferred status for particular states. That is, a state that
has been achieved once can be achieved more easily in the future. This
is a general characteristic of open systems; residues accumulate as
evidence of past dynamic activity.

Associative memory revisited

A viable associative memory system must have mechanisms that
permit macro states to be selected and assembled on a first occasion
and that allow some fraction of the potential states to emerge with a
preferred status as a result of learning. It must have a mechanism for
selection that may be part stochastic, but should be responsive to
external input, and it must have a mechanism for cyclically assembling,
disassembling, and reassembling macro states. We find that closed
systems (Hopfield and Tank 1986; Langion 1986; Smolensky 1987),
and open systems (Baird 1986; Kugler and Turvey 1987) all exhibit
some of the necessary features but an open systems theory as promoted
by Bertalanffy (1975) and further developed by Prigogine and his
colleagues (e.g., Prigogine and Stengers 1984) shows most promise for
simultaneously satisfying all requirements. , |

The use of termite nest construction as a paradigmatic example of
self-organization in an open system has value in that it is possible to
identify mechanisms that lead to macroscopic order. Qur discussion of
termite nest construction allowed us to isolate the roles of stochastic
fluctuation, perceptual sensitivity, and autocatalytic symmetry breaking
as they act through successive orders of organization. This example also
illustrates the nature of memory as a physical instantiation of a
symbolic, rate-independent process with its origins in a dynamic,
rate-dependent process.
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Baird’s (1986) account shows that multiple preferred states can be
established and can continue to coexist within the same distributed
network. Given the relatively meager knowledge about the functioning
of neural networks it is not possible to provide a clear account of the
mechanisms involved in the emergence of preferred states from the
multiple potentialities, in their assembly, disassembly and reassembly,
or in their selection. A primary claim advanced here is that whatever
the mechanisms they will be consistent with an open systems view.

Our view 1s i clear contrast to one offered by Johnson-Laird (1983:
355-406) who views self-organization as characteristic of noncognitive
or nonanticipatory systems. He argues that cognitive activity relies on a
high-level, representational model of the world; one that is based in an
arbitrary symbolic notation. Nevertheless, self-organization is not anti-
thetical to anticipation or intention (Shaw and Kinsella-Shaw 1988)
and one primary clzsim for this paper is that a self-organizational
accovnt of cognition deserves serious consideration.

Rules versus laws

Organization may be achieved via the implementation of rules that
specify how degrees of freedom are to be constraincd. The serial, digital
computer accomplishes this by representing the desired output in the
program code. Connectionists argue that their systems self-organize
which implies that the features of organization in the macro behavior
are not represented in the program code. Nevertheless a connectionist
system has to be appropriately tuned for it to generate interesting
behavior. For example, the inhibitory and excitatory processes of an
Interactive Activation—Competition network (McClelland and Rumel-
hart 1988) must be set appropriately for the system to model even
simple forms of human perceptual or judgmental behavior. For such a
network to provide a compelling explanation of human behavior some
principled basis for selecting the architecture and its parameters (ie.,
the symbolic constraints) must be established.

The construction of termite nests is influenced by dynamical laws. It
is presumably possible to develop a rule-based simulation of termite
nest construction in which the appropriate macro properties were
specified but what such a simulaiion would offer in terms of under-
standing or explanation is not clear (fig. 9). Similarly, a rule-based
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ANTHROPOMORPHIC FALLACY

Fig. 9. The modeling problem. A rule-based simulation of an organized behavior does not clarify
the nature of the mechanisms that underlie the organization.

simulation of cognition is unlikely to be enlightening. We need an
approach to modeling that honors lawful dynamical processes. No
rule-based system that establishes control through rate-independent
symbolic processes can provide a compelling model of human cognitive
behavior without a principled account of the origin of those rules.
Additionally, there needs to be some account of how the appropriate
rules could produce complex patterns of organization the details of
which are not specifically represented in the code. We propose that the
most likely source is in the dynamic rate-dependent processes that are
given expression in the formulation of natural laws.
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Law versus analogy

It is acknowledged, within the connectionist literature, that thermo-
dynamic law is exploited for the analogies ® it offers the study of
cognition (Hopfield and Tank 1986; Norman 1987; Smolensky 1987).
Indeed, the use of a freezing principle to describe the process of
achieving a stable cognitive state must be viewed as an aualogy because
actual freezing of a biological system would lead to death. However,
our reference to termite nests should not be taken as analogical. This is
a prototypical example of self-organization in a biological system. The
value of referring to termite nest construction when the concern is
specifically with cognition is that it is possible to explore interesting
facets of biological self-organization and to generate interesting hy-
potheses prior to the more challenging task of exploring self-organiza-
tion in neural systems.

It would be a mistake to view the application of thermodynamic law
by Haken (1981), Atkins (1984), or Prigogine and Stengers (1984) to an
explanation of self-organization in physical or behavioral systems as an
analogy. In their terms, thermodynamic law is a description of univer-
sal and natural regularities that have causal potency. It is in the Second
Law that lies the seeds of change. The Second Law is behind the
examples of self-organization that have been outlined in this paper and,
for some, it accounts for the creation and decay of all structure in the
universe (Atkins 1984; Haken 1981; Prigogine and Stengers 1984), The
Rayleigh-Benard convection is an ordered structure that is created by a
dissipative dynamic. Similarly, the pattern of organization in the termite
pheromone field is sustained by a flow of energy and matter as is
consistent with the Second Law (Deneubourge 1977). These systems
may be contrasted to a digital computer which is a dualistic machine;
energy flows serve to sustain the machine in a state that maintains its
capability for work but the energy flows have no influence on the
nature of the symbolic processing.

The patterns that emerge from the influence of the Second Law are
referred to as dissipative structures (Prigogine and Stengers 1984),

? Most frequently referred to as metaphor in the PDP literature. A metaphor is an elegant and
creative expression of an idea; a figure of speech (e.g., the cat is out of the bag), while an analogy
expresses similarity on some dimension. Analogy is the correct characterization of thermodynamic
principles as employed in PDP modeling for the simulation of cognition.
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which in effect are local abatements of entropy (disorder, homogeneity).
Dissipative structures are Nature’s sleight of hand; they are local
structures in which order is created in a manner that speeds the global
progress towards universal entropy. Kugler and Turvey (1987), for
whom cognition is also a dissipative structure, employ the Second Law
of thermodynamics as a law in contrast to an analogy, and are in
concert with Atkins (1984), Haken (1981), and Prigogine and Stengers
(1984) in viewing it as universally responsible for order. From that
perspective the Second Law has certain imperatives that cannot be
ignored. Any account of cognition that is not consistent with the
Second Law is necessarily flawed.

On the other hand, the use of thermodynamic law as a source of
analogies carries no such imperatives. The value of an analogy lies in its
heuristic potential and in the ability of the user to exploit that poten-
tial. Analogies offer considerable freedom. They may be exploited in
any way they are found to be useful and much of the value of a specific
analogy may stem from the creativity of the user rather than from the
intrinsic power of the analogy. Nevertheless, the freedom offered by the
use of analogies can also be viewed as a lack of constraint and this may
account for the seemingly arbitrary proliferation of PDP models.
Cognitive science has relied heavily on analogies in the past; a strategy
that may have contributed to a situation in which it is vulnerable to the
charge that ‘each new experimental finding seems to require a new
theory’ (Norman 1987: 535). It is nevertheless ironic that this charge
emerges from the connectionist literature because the arbitrary prolifer-
ation of models is one glaring problem with the PDP enterprise.

The claim offered here is that analogy is a poor basis for a paradigm
shift, or even for a scientific thrust (also see Bertalanffy 1968: 84-85).
There is no doubt that analogy can be useful for genelaling or com-
municating ideas, understanding, or hypotheses, but the development
of any scientific endeavor must ultimately be based on laws. To
relegate laws to a subsidiary role will lead to unprincipled distinctions
and theoretical elaborations that contribute little to the progressive
construction of a useful body of knowledge.

Summary

Connectionists, by their concern with self-organization, micro and
macro states, and the mapping between them have introduced a val-
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uable emphasis to the study of human behavior. Consideration of the
mapping between micro and macro states is essential to the under-
standing of complex, nonlinear systems, of which humans, collectively
or individually, are prime examples. An appeal to self-organization
offers an alternative to classical reductionism and, when understood in
detail, a solution to the homunculus problem. Nevertheless, the view of
self-organization presented in the PDP literature is limited, particularly
in the nature of the physical examples that guide the modeling efforts.
While computational temperature would appear to provide an effective
order parameter for the emergence of structure in cognition, the reli-
ance on a heating principle for the emergence of diverse and creative
patterns of behavior will be more productive than reliance on a cooling
principle. The concept of a dissipative structure within the framework
of an open systems account has much to offer the study of associative
memory or of cognition. '

In addition, analogy is a precarious basis for a paradigin shift, or
even for the less ambitious tasks of theorizing and model development.
The use of thermodynamic law as a source of analogies denies the
imperatives that would flow from giving it full force as a lawful basis
for the emergent structure of cognition. A lawful account of cognition
based on thermodynamic law is likely to avoid the unprincipled pro-
liferation of explanations and models and is likely to lead to a more
coherent development of our science. The challenge remains to turn
these ideas into an account of the human behaviors that are central to
adaptive functioning in a complex world. This is a challenge that the
dominant forces in 100 years of experimental and cognitive psychology
have so far failed to tackle in any substantive way.
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